ЧТО ТАКОЕ ТАИМИНГИ И КАК ОНИ ВЛИЯЮТ НА СКОРОСТЬ

Содержание
  1. Почему вам стоит разгонять оперативную память (это легко!)
  2. Да, скорость работы памяти имеет значение
  3. Разгонять память не страшно
  4. Скорость, тайминги и CAS-латентность
  5. XMP не будет делать всё за вас
  6. Как разгонять память
  7. Цена улучшений, разгон и поиски баланса
  8. Практическое применение разгона памяти
  9. Что под капотом?
  10. 2133 МГц CL12
  11. 2666 МГц CL13
  12. TL;DR и результаты
  13. Как DDR проявляет себя в тестах
  14. Тактовая частота оперативной памяти
  15. Разгон оперативной памяти
  16. Тайминги оперативной памяти
  17. Какую оперативную память выбрать
  18. Охлаждение оперативной памяти
  19. Сколько оперативной памяти нужно компьютеру
  20. Как выбрать оперативную память. Итоги
  21. Что такое тайминги оперативной памяти?
  22. Важны ли тайминги оперативной памяти?
  23. Как узнать тайминги оперативной памяти?
  24. Проверка таймингов оперативной памяти
  25. Расшифровка таймингов
  26. Схема таймингов памяти
  27. Штатные тайминги
  28. Средние тайминги DDR4
  29. Задержка CAS (CL)
  30. tRCD (задержка RAS to CAS)
  31. tRP (время предварительной зарядки строки)
  32. tRAS (задержка от активации до предварительной зарядки)
  33. Подбор таймингов памяти DDR4
  34. Средние тайминги DDR3
  35. Задержка памяти DDR3
  36. Какие тайминги лучше для DDR3
  37. Латентность памяти DDR3
  38. Можно ли ставить оперативную память с разными таймингами?
  39. Должны ли совпадать тайминги оперативной памяти
  40. Какие тайминги лучше для оперативной памяти?
  41. Высокие тайминги оперативной памяти

Почему вам стоит разгонять оперативную память (это легко!)

Любая программа на ПК использует для работы оперативную память, RAM. Ваша RAM работает на определённой скорости, заданной производителем, но несколько минут копания в BIOS могут вывести её за пределы стандартных спецификаций.

Да, скорость работы памяти имеет значение

Каждая запускаемая вами программа загружается в память с вашего SSD или жёсткого диска, скорость работы которых гораздо ниже, чем у памяти. После загрузки программа обычно остаётся в памяти некоторое время, и CPU получает к ней доступ по необходимости.

Улучшение скорости работы памяти может напрямую улучшить эффективность работы CPU в определённых ситуациях, хотя существует и точка насыщения, после которой CPU уже не в состоянии использовать память достаточно быстро. В повседневных задачах несколько дополнительных наносекунд не принесут вам особой пользы, но если вы занимаетесь обработкой больших массивов чисел, вам может помочь любое небольшое увеличение эффективности.

В играх скорость RAM может ощущаться гораздо сильнее. У каждого кадра есть только несколько миллисекунд на обработку кучи данных, поэтому если вы играете в игру, зависящую от скорости CPU (к примеру, CSGO), ускорение памяти может увеличить частоту кадров. Посмотрите на это измерение скорости от Linus Tech Tips:

Средняя частота кадров вырастает на несколько процентов с увеличением скорости RAM, когда большую часть работы делает CPU. Сильнее всего скорость памяти проявляется на минимальном показателе частоты; когда загрузка новой области или нового объекта должна произойти за один кадр, он будет прорисовываться дольше обычного, если будет ожидать загрузки данных в память. Это называется «микрозаикание», или «фриз», и игра может производить впечатление заторможенности даже при хороших показателях средней частоты кадров.

Разгонять память не страшно

Память не особенно перегревается, поэтому разгонять её довольно безопасно. Даже на нестабильных частотах худшее, что может произойти – это выявление ошибки при тесте на стабильность. Однако если вы проводите эти эксперименты на ноутбуке, вам нужно убедиться, что вы сможете очистить CMOS (восстановив настройки в BIOS по умолчанию), если что-то пойдёт не так.

Скорость, тайминги и CAS-латентность

Но большая часть DDR4 RAM работает на 3000 МГц, 3400 МГц или выше – благодаря XMP (Extreme Memory Profile). X MP, по сути, позволяет памяти сообщить системе: «Да, я знаю, что DDR4 должна поддерживать частоту до 2666 МГц, но почему бы тебе не ускорить меня?» Это ускорение из коробки, предварительно настроенное, проверенное и готовое к запуску. Оно достигается на уровне железа, при помощи чипа на памяти под названием Serial Presence Detect (SPD), поэтому на одну планку может быть только один профиль XMP:

У каждой планки памяти есть несколько встроенных вариантов тактовой частоты; стоковый вариант использует ту же самую систему SPD под названием JEDEC. Любая частота, превышающая скорость JEDEC, считается разгоном – то есть, XMP получается просто профилем JEDEC, разогнанным на заводе.

Тайминги RAM и CAS-латентность – два разных способа измерять скорость памяти. Они измеряют задержку (то, насколько быстро RAM реагирует на запросы). C AS-латентность – это мера того, сколько тактов проходит между командой READ, отправленной в память, и получением процессором ответа. Её обычно обозначают «CL» и указывают после частоты памяти, например: 3200 Mhz CL16.

Она обычно связана со скоростью работы памяти – чем больше скорость, тем больше CAS-латентность. Но CAS-латентность – лишь один из множества разных таймингов и таймеров, с которыми работает RAM; все остальные обычно просто называются таймингами памяти. Чем меньше тайминги, тем быстрее будет ваша память. Если вам захочется подробнее узнать о каждом из таймингов, прочитайте руководство от Gamers Nexus.

XMP не будет делать всё за вас

Вы можете купить планку памяти от G. Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.

Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх ( да, это реально можно купить).

Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.

Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.

Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.

Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.

Как разгонять память

Самое сложное в разгоне памяти – определить, какие частоты и тайминги нужно использовать, поскольку в BIOS есть более 30 различных настроек. К счастью, четыре из них считаются «основными» таймингами, и их можно подсчитать при помощи программы Ryzen DRAM Calculator. Она предназначена для систем на базе AMD, но будет работать и для пользователей Intel, поскольку в основном предназначена для расчётов таймингов памяти, а не CPU.

Эти тайминги можно сравнить с прописанными спецификации при помощи кнопки Compare timings – тогда вы увидите, что на безопасных настройках всё немножечко подкручено, а основная CAS-латентность уменьшена на быстрых настройках. Будут ли у вас работать быстрые настройки – вопрос удачи, поскольку это зависит от конкретной планки, но у вас, вероятно, получится заставить память работать с ними в безопасном диапазоне напряжений.

Скриншот программы лучше отправить на другое устройство, поскольку вам понадобится редактировать настройки таймингов в BIOS компьютера. Затем, когда всё работает, вам нужно будет проверить стабильность разгона при помощи встроенного в калькулятор инструмента. Это процесс долгий, и вы можете прочитать наше руководство по разгону памяти, чтобы узнать все его подробности.

Привет, GT! Все мы любим новое железо — приятно работать за быстрым компьютером, а не смотреть на всякие прогрессбары и прочие песочные часики. Если с процессорами и видеокартами всё более-менее понятно: вот новое поколение, получите ваши 10-20-30-50% производительности, то с оперативкой всё не так просто.

Где прогресс в модулях памяти, почему цена на гигабайт почти не падает и чем порадовать свой компьютер — в нашем железном ликбезе.

Стандарт памяти DDR4 имеет ряд преимуществ перед DDR3: большие максимальные частоты (то есть пропускная способность), меньшее напряжение (и тепловыделение), и, само собой, удвоенная ёмкость на один модуль.

Комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (более известный как JEDEC) трудится над тем, чтобы ваша оперативная память Kingston подходила к материнской плате ASUS или Gigabyte, и по этим правилам играют все. По части электрики, физики и разъёмов всё жёстко (оно и понятно, нужно обеспечить физическую совместимость), а вот в отношении рабочих частот, объёмов модулей и задержек в работе правила допускают некоторую волатильность: хотите сделать лучше — делайте, главное, чтобы на стандартных настройках у пользователей не было проблем.

Именно так получились в своё время модули DDR3 с частотой выше, чем 1600 МГц, и DDR4 с частотами выше 3200 МГц: они превышают базовые спецификации, и могут работать как на «стандартных» параметрах, совместимых со всеми материнскими платами, так и с экстремальными профилями (X. M. P.), протестированными на заводе и зашитыми в BIOS памяти.

Основные улучшения в этой сфере ведутся сразу в нескольких направлениях. Во-первых, производители непосредственно микросхем памяти (Hynix, Samsung, Micron и Toshiba) постоянно улучшают внутреннюю архитектуру чипов в пределах одного техпроцесса. От ревизии к ревизии внутреннюю топологию доводят до совершенства, обеспечивая равномерность нагрева и надёжность работы.

Во-вторых, память потихоньку переходит на новый техпроцесс. К сожалению, здесь нельзя проводить улучшения также быстро, как делают (делали последние лет 10) производители видеокарт или центральных процессоров: грубое уменьшение размеров рабочих частей, то есть транзисторов, потребует соответствующего снижения рабочих напряжений, которые ограничены стандартом JEDEC и встроенными в CPU контроллерами памяти.

Поэтому единственное, что остаётся — не только «поджимать» производственные нормы, но ещё и параллельно увеличивать скорость работы каждой микросхемы, что потребует соответствующего повышения напряжения. В итоге и частоты растут, и объёмы одного модуля.

Примеров такого развития много. В 2009-2010 году нормальным был выбор между 2/4 гигабайтами DDR3 1066 МГц и DDR3 1333 МГц на один модуль (обе были выполнены по 90-нм техпроцессу). Сегодня же умирающий стандарт готов предложить вам 1600, 1866, 2000 и даже 2133 МГц рабочих частот на модулях в 4, 8 и 16 ГБ, правда внутри уже 32, 30 и даже 28 нм.

К сожалению, подобный апгрейд стоит немалых денег (в первую очередь на исследования, закупку оборудования и отладку производственного процесса), так что ждать радикального уменьшения цены 1 ГБ оперативки до выхода DDR5 не придётся: ну а там нас ждёт очередное удвоение полезных характеристик при той же цене производства.

Цена улучшений, разгон и поиски баланса

Растущий объём и скорость работы напрямую влияет на ещё один параметр оперативной памяти — задержки (они же тайминги). Работа микросхем на высоких частотах до сих пор не желает нарушать законы физики, и на различные операции (поиск информации на микросхеме, чтение, запись, обновление ячейки) требуются определённые временные интервалы. Уменьшение техпроцесса даёт свои плоды, и тайминги растут медленнее, чем рабочие частоты, но здесь необходимо соблюдать баланс между скоростью линейного чтения и скоростью отклика.

Например, память может работать на профилях 2133 МГц и 2400 МГц с одинаковым набором таймингов (15-15-15-29) — в таком случае разгон оправдан: при большей частоте задержки в несколько тактов только уменьшатся, и вы получите не только увеличение линейной скорости чтения, но и скорости отклика. А вот если следующий порог (2666 МГц) требует увеличения задержек на 1-2, а то и 3 единицы, стоит задуматься. Проведём простые вычисления.

Делим рабочую частоту на первый тайминг (CAS).

Чем выше соотношение — тем лучше:

2133 / 15 = 142,2

2400 / 15 = 160

2666 / 16 = 166,625

2666 / 17 = 156,823

Полученное значение — знаменатель в дроби 1 секунда / Х * 1 000 000. То есть чем выше число, тем ниже будет задержка между получением информации от контроллера памяти и отправкой данных назад.

Как видно из расчётов, наибольший прирост — апгрейд с 2133 до 2400 МГц при тех же таймингах. Увеличение задержки на 1 такт, необходимое для стабильной работы на частоте 2666 МГц всё ещё даёт преимущества (но уже не такие серьёзные), а если ваша память работает на повышенной частоте только с увеличением тайминга на 2 единицы — производительность даже немного снизится относительно 2400 МГц.

Верно и обратное: если модули совершенно не хотят увеличивать частоты (то есть вы нащупали предел для конкретно вашего комплекта памяти) — можно попытаться отыграть немного «бесплатной» производительности, снизив задержки.

На самом деле факторов несколько больше, но даже эти простые расчёты помогу не напортачить с разгоном памяти: нет смысла выжимать максимальную скорость из модулей, если результаты станут хуже, чем на средних показателях.

Практическое применение разгона памяти

В плане софта от подобных манипуляций в первую очередь выигрывают задачи, постоянно эксплуатирующие память не в режиме потокового чтения, а дёргающие случайные данные. То есть игры, фотошоп и всякие программистские задачи.

Аппаратно же системы со встроенной в процессор графикой (и лишённые собственной видеопамяти) получают значительный прирост производительности как при снижении задержек, так и при увеличении рабочих частот: простенький контроллер и невысокая пропускная способность очень часто становится бутылочным горлышком интегрированных GPU. Так что если ваши любимые «Цистерны» еле-еле ползают на встроенной графике старенького компа — вы знаете, что можно попробовать предпринять для улучшения ситуации.

Как не странно, больше всего от подобных улучшений выигрывают среднестатистические пользователи. Нет, безусловно, оверклокеры, профессионалы и игроки с полным кошельком получают свои 0.5% производительности, применяя экстремальные модули с запредельными частотами, но их доля на рынке мала.

Что под капотом?

Белые алюминиевые радиаторы снять достаточно просто. Шаг нулевой: заземляемся об батарею или ещё какой металлический контакт с землёй и даём стечь статике — мы же не хотим дать нелепой случайности убить модуль памяти?

Шаг первый: прогреваем модуль памяти феном или активными нагрузками на чтение-запись (во втором случае вам надо быстренько выключить ПК, обесточить его и снять оперативку, пока она ещё горячая).

Шаг второй: находим сторону без наклейки и аккуратно подцепляем радиатор чем-нибудь в центре и по краям. Использовать печатную плату как основание для рычага можно, но с осторожностью. Внимательно выбираем точку опоры, стараемся избегать давления на на хрупкие элементы. Действовать лучше по принципу «медленно, но верно».

Шаг третий: открываем радиатор и разъединяем замки. Вот они, драгоценные чипы. Распаяны с одной стороны. Производитель — Micron, модель чипов 6XA77 D9SRJ.

Правда, дома снимать теплораспределители не стоит — сорвёте пломбу и плакала ваша пожизненная 1
гарантия. Да и родные радиаторы отлично справляются с возложенными на них функциями.

Попробуем измерить эффект от разгона оперативки на примере комплекта HyperX Fury
HX426C16FW2K4/32. Расшифровка названия даёт нам следующую информацию: HX4 — DDR4, 26 — заводская частота 2666 МГц, C16 — задержки CL16. Далее идёт код цвета радиаторов (в нашем случае — белый), и описание комплекта K4/32 — набор из 4 модулей суммарным объёмом 32 ГБ. То есть уже сейчас видно, что оперативка незначительно разогнана ещё при производстве: вместо штатных 2400 прошит профиль 2666 МГц с теми же таймингами.

Помимо эстетического удовольствия от созерцания четырёх «Белоснежек» в корпусе вашего ПК этот набор готов предложить весомых 32 гига памяти и нацелен на пользователей обычных процессоров, не особо балующихся разгоном CPU. Современные Intel’ы без буквы K на конце окончательно лишились всех возможных способов получения бесплатной производительности, и практически не получают никаких бонусов от памяти с частотой выше 2400 МГц.

В качестве тестовых стендов мы взяли два компьютера. Один на базе Intel Core i7-6800K и материнской плате ASUS X99 (он представляет платформу для энтузиастов с четырёхканальным контроллером памяти), второй с Core i5-7600 внутри (этот будет отдуваться за мэйнстримовое железо со встроенной графикой и отсутствующим разгоном). На первом проверим разгонный потенциал памяти, а на втором будем измерять реальную производительность в играх и рабочем софте.

Со стандартными профилями JEDEC и заводским X. M. P. память имеет следующие режимы работы:

DDR4-2666 CL15-17-17 @1.2V

DDR4-2400 CL14-16-16 @1.2V

DDR4-2133 CL12-14-14 @1.2V

Легко заметить, что настройки таймингов под 2400 МГц делают память не такой отзывчивой, как профили 2133 и 2666 МГц.

2133 / 12 = 177.75

2400 / 14 = 171.428

2666 / 15 = 177.7

 

Попытки завести память на частоте 2900 МГц с повышением задержек до 16-17-18, 17-18-18, 17-19-19 и даже с подъёмом напряжения до 1.3 Вольта ничего не дали. Без серьёзных нагрузок компьютер работает, но фотошоп, архиватор или бенчмарк плюются ошибками или сваливают систему в BSOD. Похоже, что частотный потенциал модулей выбран до конца, и единственное, что нам остаётся — уменьшать задержки.

Для нашего i5 со встроенной графикой в качестве бенчмарка мы выбрали GTA V. Игра не молодая, использует API DirectX 11, который давно известен и отлично вылизан в драйверах Intel, любит потреблять оперативную память и нагружает систему сразу по всем фронтам: GPU, CPU, Ram, чтение с диска. Классика. Вместе с этим GTA V использует т.н. «отложенный рендеринг», благодаря которому время расчёта кадра меньше зависит от сложности сцены, то есть методика испытания будет чище, а результаты — нагляднее.

За средний FPS возьмём значения, укладывающиеся в нормальное течение игры: пролёт самолёта, езда в городе, уничтожение супостатов имеют равномерный профиль нагрузки. По таким сценам (отбросив 1% лучших и худших результатов из массива данных) и получим средне-игровой FPS.

Просадки определим по сценам со взрывами и сложными эффектами (водопад под мостом, закатные пейзажи) аналогичным образом.

Подлагивания и неприятные фризы при резкой смене окружения (переключение от одного тестируемого случая к другому) случаются даже на монструозной GTX 1080Ti, постараемся их отметить, но в результаты не возьмём: в игре оно не встречается, и это, скорее, косяк самого бенчмарка.

CPU:
Intel Core i5-7500 (4c4t @ 3.8 ГГц)

GPU:
Intel HD530

RAM:
32 GB HyperX Fury White (2133 МГц CL12, 2666 МГц CL15 и 2666 МГц CL13)

MB:
ASUS B250M

SSD:
Kingston A400 240 GB

Для начала выставим стандартные частоты X. M. P.-профиля: 2666 МГц с таймингами 15-17-17. Встроенный бенчмарк GTA V выдаёт идентичный FPS и одинаковые просадки на минимальных и средних настройках в разрешении 720p: в большинстве сцен счётчик колеблется в районе 30–32, а в тяжёлых сценах и при смене одной локации на другую FPS проседает.

Причина очевидна — мощностей GPU достаточно, а вот блоки растеризации просто не успевают собрать и отрисовать большее число кадров в секунду. На «высоких» настройках графики результаты стремительно ухудшаются: игра начинает упираться непосредственно в скромные вычислительные возможности интегрированной графики.

2133 МГц CL12

Собственной памяти у GPU нет, и он вынужден постоянно дёргать системную. Пропускная способность DDR4 в двухканальном режиме на частоте 2133 МГц составит 64 бит (8 байт) × 2 133 000 000 МГц × 2 канала — порядка 34 Гб/с, с небольшими (до 10%) накладными потерями.

Для сравнения, пропускная способность подсистемы памяти у самой скромной дискретной карточки NVIDIA GTX 1030 — 48 Гб/с, а GTX 1050 Ti (которая легко выдаёт в GTA V 60 FPS на максимальных настройках в FullHD) — уже 112 Гб/с.

На заднем плане виден тот самый водопад под мостом, просаживающий FPS во внутриигровом бенчмарке.

Результаты бенчмарка просели до 28 FPS в среднем, а лаги при смене локаций и взрывах их ненапряжных просадок превратились в неприятные микрофризы.

2666 МГц CL13

Снижение таймингов значительно сократило время ожидания ответа от памяти, а стандартные результаты с данной частотой у нас уже есть: можно будет сравнить три бенчмарка и получить наглядную картину. Пропускная способность для 2666 МГц уже 21.3 Гб/с ×2 канала ~ 40 Гб/с, сравнимо с младшей NVIDIA.

Максимальный FPS практически не вырос (0.1 не показатель и находится на грани погрешности измерений) — здесь мы всё ещё упираемся в скромные возможности ROP’ов, а вот все просадки стали менее заметны. В сценах с водопадом из-за высокой вычислительной нагрузки результат не изменился, во всех остальных — то есть на прогрузках, взрывах и прочих радостях, замедлявших работу видеоядра вырос в среднем на 10-15%. Вместо 25–27 кадров в нагруженных событиями эпизодах — уверенные 28–29. В целом игра стала ощущаться значительно комфортнее.

TL;DR и результаты

Нельзя оценивать скорость работы оперативной памяти по одной только частоте. У DDR4 достаточно большие тактовые задержки, и при прочих равных стоит выбирать память не только удовлетворяющую потребности вашего железа по рабочей частоте и объёму, но и уделять внимание этому параметру.

Проведённые тесты показали, что компьютеры на базе Intel Core i-серии со встроенной графикой получают заметный прирост производительности при использовании высокоскоростной памяти с низкими задержками. Видеоядро не имеет собственных ресурсов для хранения и обработки данных и пользуется системными отлично отвечает (до определённого предела) на рост частоты и снижение таймингов, так как от скорости доступа к памяти напрямую зависит время отрисовки кадра со множеством объектов.

Самое важное! Линейка Fury выпускается в нескольких цветах: белом, красном и чёрном — можно подобрать не только быструю память, но и подходящую по стилю к остальным комплектующим, как делают специалисты из HyperPC.

Из-за особенностей российского законодательства «пожизненная» гарантия будет действовать всего 10 лет со дня приобретения. Впрочем, в масштабах компьютерного железа с текущими темпами развития технологий и 10 лет срок не малый, а там и законодательство может измениться.

DRAM — это динамическая память с произвольным доступом, где каждый бит информации хранится в отдельном конденсаторе внутри интегральной схемы. Она называется так, потому что требует периодического обновления. Это та самая оперативная память, которая используется в смартфонах, планшетах, компьютерах и других электронных устройствах. Правда, сейчас оперативную память, которой оснащаются современные гаджеты, принято относить к подтипу SDRAM.

SDRAM — это синхронная динамическая память с произвольным доступом. Она является подвидом DRAM, так что ab ovo это одно и то же, просто новее и быстрее. А отличает их наличие своего рода таймера, который используется для синхронизации памяти с микропроцессором и совместной обработки данных. Отсюда же происходит и такое понятие, как DDR — double data rate. О нём мы поговорим далее, а пока переходим к SRAM.

SRAM — это статическая память с произвольным доступом, которая использует для хранения данных схему с бистабильной фиксацией. Звучит сложно, но на деле всё просто и понятно. Статическая память не требует постоянного обновления, и она намного быстрее, чем DRAM, а потому стоит дороже и используется в меньших объемах. Типичная область применения для SRAM — это кэш 2 и 3 уровня.

Применительно к компьютерам объем DRAM или SDRAM измеряется в гигабайтах. Но у пассивных устройств вроде умных колонок, фитнес-браслетов и т.д. оперативки может быть всего несколько сотен мегабайт, которых им более чем достаточно. Для кэша L2 и L3 памяти используется еще меньше. В основном это 8-10-12 или 16 МБ. Их задачи просто не требуют, чтобы объем был больше. Да и размеры имеют значение — из-за более низкой плотности 4 мегабайта SRAM-памяти примерно равноценны по размерам DRAM-планке на 128 МБ.

SO-DIMM— это компактные планки оперативной памяти. Они применяются в основном в ноутбуках и некоторых компактных неттопах. По своим свойствам SO-DIMM ничем не отличается от стандартизированных планок, просто имеет меньший размер. Но из-за различия в габаритах установить планку DIMM вместо SO-DIMM не выйдет и наоборот.

Бывает ещё серверная память, которая даже имеет те же размеры, что и планки DIMM, но в персональных компьютерах её не используют из-за несовместимости с контроллерами ЦПУ. Но это не тема нашей статьи, поэтому заострять внимание на этом типе ОЗУ мы не будем.

Как DDR проявляет себя в тестах

Быстродействие оперативной памяти напрямую связано с её классом. Раньше стандартом для отрасли была SDR-память, а сегодня все перешли на DDR.

DDR — современный вид оперативной памяти, который относится к типу динамической синхронной памяти с удвоенной скоростью передачи данных. Удвоение скорости стало следствием перевода этого типа памяти на новую механику считывания команд. Она позволяет распознавать их не только по фронту (переходом из состояния 0 в 1), но и по спаду тактового сигнала. Таким образом DDR-память при работе на частоте 100 МГц выдаёт эффективность, сопоставимую с работой SDR (прошлое поколение) на частоте 200 МГц.

Из-за этого даже появились понятия реальной и эффективной частоты. Например, если вы купили плату на 2133 МГц, то не удивляйтесь, что в синтетике она выдаст только 1066. Тут-то и проявляется тот самый double rate, от которого происходит название DDR-памяти. Реально она развивает вдвое меньшую скорость, чем на ней указана, но эффективность её работы будет такой, как если бы она была вдвое выше. Немного запутано, но в целом логично.

Тактовая частота оперативной памяти

Современные планки стандарта DDR4 (бывает ещё и DDR5, но подробно на них мы останавливаться не будем) работают на частоте 2133 — 3200 (3333) МГц. Это большая разница, но больше не всегда означает лучше, особенно, если ваш компьютер оснащен неподходящим процессором.

Допустим, в спецификациях вашего процессора указано дословно следующее: Up to DDR4 2133. Это значит, что ему подойдёт память DDR4 с частотой 2133

МГц. Вы можете установить планку на 3200 и даже 4800, но процессор просто не даст ей работать по максимуму, потому что сам не в силах обработать больше. Поэтому память с более высоким показателем тактовой частоты будет работать на частоте, которую ей позволяет чип, и не более того.

То же самое (урезание частоты) будет, установить в пару к тому же процессору одну плату на 2133 и другую на 1066. Они будут работать вместе без каких-либо проблем. Но процессор не сможет добавить мегагерц планке ОЗУ с меньшей частотой. Из-за этого обе — даже та, которая способна работать на более высокой частоте — не смогут разогнаться выше 1066 МГц. Если её не разгонять.

Разгон оперативной памяти

Разгон оперативки — это обычная процедура, которая позволяет принудительно повысить ее тактовую частоту. Способность конкретной планки ОЗУ к разгону зависит не от характеристики, указанной производителем, а от чипов памяти. Разгон позволяет увеличить тактовую частоту довольно существенно. Например, планки на 2666 МГц после разгона начинают работать на частоте 3200, а те, что работали на частоте 3200 — переходят на 4166.

По частоте, кстати, очень легко посчитать пропускную способность конкретной планки в мегабайтах. Просто умножайте её частоту на 8 (бит) и получите точный результат. Так, для планки DDR с частотой 2400 пропускная способность составит 19200 МБ, а для планки с частотой 3800 будет равна 30400 МБ.

Увеличение частоты, на которой работает оперативная память, сокращает задержку (Latency). Но на игры она почти не влияет. От того, на какой частоте работает ваша планка ОЗУ, показатель FPS не снизится и не увеличится, как и частота обновления экрана. Это не касается видеопамяти, которая напрямую влияет на производительность игр. Речь только о стандартной оперативке.

Тактовая частота — это «рабочий» показатель, который важен не только для совместимости с процессором, но и для выполнении профессиональных задач. Вы точно заметите разницу при работе с некоторыми специфическими приложениями, которые реально ускоряются, если вы используете высокочастотную оперативку. Например, быстрые типы ОЗУ хорошо проявляют себя в архивации. Чем выше частота планки, тем быстрее пойдет процесс.

Тайминги оперативной памяти

Другой показатель, о котором нужно знать при выборе оперативной памяти — это тайминги. По сути, это просто задержка. Они показывают время, которое проходит от момента отправки памятью команды и её фактическим исполнением. Их измеряют тактами. Поэтому, если вы посмотрите на спецификации любой платы оперативной памяти, то увидите там циферки вида 8-8-8-16.

Эти цифры обозначают выполнение четырёх операций. Именно поэтому тайминги обычно указываются в виде четырёх цифр. Хотя некоторые производители указывают только первую цифру, потому что именно она является наиболее важной. Но мы разберём, что значит каждая из них:

  1. CAS Latency (CL — самый важный показатель) обозначает число тактов, которое проходит между отправкой запроса и началом ответа;
  2. RAS to CAS Delay — число тактов, которое у контроллера занимает активация нужной строки банка;
  3. RAS Precharge — число тактов, которое требуется для закрытия одной строки данных и перехода к другой;
  4. Row Activate Time — число тактов до закрытия строки.

Не факт, что вам вообще нужно это знать, но для общего развития сгодится. Главное запомнить, что чем ниже тайминги, тем лучше. Это значит, что оперативке требуется меньше времени на доставку информации в пределах самой планки. Рассчитать фактическую скорость оперативки, используя данные о её характеристиках и зная специальную формулу, очень просто.

Какую оперативную память выбрать

Несмотря на то что при выборе оперативной памяти действует принцип «лучше — быстрее», слепое следование ему не всегда может быть оправдано.

Выше мы уже давали понять, что тактовая частота в том числе является характеристикой соответствия памяти, которую вы устанавливаете, и процессора, который уже установлен в системном блоке вашего ПК. Но, теперь остановимся на этом подробнее. А, чтобы было понятнее, проведём понятную всем аналогию: просто представьте, что оперативка — это гайка, которую нужно закрутить, а процессор — гаечный ключ.

Если вы, имея ключ на 12, возьмёте маленькую или, наоборот, слишком большую гайку, они просто не подойдут друг другу и у вас ничего не выйдет. Мы не можем говорить о том, что эта гайка или этот ключ хорошие или плохие. Они просто не предназначены для того, чтобы работать в паре. Поэтому как гайку и ключ нужно подбирать по размеру, так и оперативку и процессор нужно выбирать по совпадающей частоте.

Но процессор и память при удобстве этой аналогии для пояснения — это всё-таки не ключ и не гайка. Поэтому вы в принципе можете установить быструю современную оперативку в компьютер, где используется старенький проц. Но из-за несовпадения характеристик эта планка будет работать на минимальной частоте.

Охлаждение оперативной памяти

Охлаждение оперативной памяти — тема не столь популярная, как её разгон, но идущая с ней практически рука об руку. В данном случае речь идёт именно про оперативку (SDRAM), а не видеопамять (VRAM), которой охлаждение жизненно необходимо. Несмотря на то что, кажется, обычным планкам ОЗУ не от чего испытывать нагрев, это не так. Большинство из них могут нагреваться довольно сильно — до 80-90. Это их рабочий нагрев, с которым не нужно бороться.

Куда страшнее — перегрев. Оперативка, как и любая другая микросхема, может страдать от перегрева, если работает под чрезмерной нагрузкой. В частности это касается разогнанных планок, тактовую частоту которых повысили принудительно. В таких случаях вы практически всегда получите повышенный нагрев, и, если не вернуть памяти оптимальную температуру работы (а добиться её зачастую удается только принудительно), она может начать сбоить и в конечном итоге — сгореть.

Охлаждать оперативную память чаще всего предлагается пассивным способом. Для этого нужно купить специальный радиатор, который выполнен из теплопроводящего материала вроде алюминия и крепится на планку ОЗУ. Когда та начинает перегреваться, он быстро забирает её тепло на себя и за счёт увеличенной площади (радиаторы всегда больше по размерам, чем сама ОЗУ), отдаёт тепло вовне.
недорого, и выглядят довольно стильно, а зачастую даже имеют собственную подсветку. За это их и любят геймеры, которые стремятся установить по радиатору на каждую используемую планку. Но, как мы уже выяснили выше, оперативке в играх не приходится испытывать повышенные нагрузки, поэтому и практической пользы от радиаторов ОЗУ для геймеров, кроме разве что внешней привлекательности, не будет.

Ноутбуку охлаждение оперативной памяти тоже не нужно. Радиаторы слишком громоздкие, чтобы установить их в корпус небольшого, пусть и игрового, лэптопа. Ему просто негде там разместиться. Поэтому запомните правило — радиаторы ОЗУ нужны только стационарным компьютерам, да и то не всем.

Сколько оперативной памяти нужно компьютеру

Стандартом для ПК в 2022 году были 8-гигабайтные планки ОЗУ. Этого объема большинству пользователей хватало за глаза и за уши. Но многие любят, чтобы всего, включая оперативку, было с запасом, да и серьёзные задачи зачастую требуют наращивания этого вида памяти. Поэтому на 2023 год «базу» всё-таки лучше не брать. Тем более, что и переплатить за планку на 16 ГБ придется не так много.

Всё, что больше — уже на ваше усмотрение. Даже если у вас много денег, особого смысла брать 32 или 64 ГБ оперативной памяти для компьютера, где она будет простаивать, просто нет. Такие объёмы считаются рабочими, и могут пригодиться только в тяжёлых сценариях использования, которые требуют одновременного выполнения нескольких задач вроде редактирования нескольких десятков слоёв в Photoshop или использовании трёх и более вкладок в Google Chrome. Шутка :).

Впрочем, надо учитывать, что некоторые компьютеры, в основном это, конечно, ноутбуки, позволяют выбрать объём оперативной памяти только один раз — на этапе покупки. Поэтому нарастить ОЗУ уже после вам не удастся. В частности, от этой проблемы страдают компьютеры Mac на процессорах Apple Silicon. Они используют так называемую объединенную память, которая распаяна на одной плате вместе с процессором и накопителем, и извлечь ее оттуда невозможно.

Как выбрать оперативную память. Итоги

При выборе оперативной памяти нужно учитывать следующие факторы:

  1. Какой стандарт оперативной памяти (DDR3 или DDR4) поддерживает ваш процессор. Как правило, эта информация указывается прямо в его спецификациях, поэтому тут никакой тайны нет. Если у вас, камень, вышедший хотя бы в течение последних 5 лет, то он будет поддерживать планки DDR4 — их и берите. А DDR5 , хоть они уже и доступны в продаже, наобум лучше не брать — они имеют ограниченную совместимость и могут не подойти. Только если вы наверняка знаете, что ваш процессор поддерживает этот класс, и вам он действительно нужен (но тогда зачем вам эта статья?).
  2. Не гонитесь за самыми высокими показателями тактовой частоты. Во-первых, ваш процессор может просто их не потянуть, и тогда даже самая быстрая память будет работать на частоте, которую поддерживает используемый чип. Во-вторых, оперативку почти всегда можно разогнать, сэкономив на покупке планки с невысокой частотой и потом увеличив показатели ее быстродействия принудительно.
  3. Выбирайте планки оперативной памяти одного стандарта и одной тактовой частоты. Если вы установите в свою машину ОЗУ с частотой 2133 и 3200 МГц, процессор автоматически уравняет их, и они смогут работать на минимальной частоте, не превышающей 2133 МГц.
  4. Следите за тем, чтобы размер планки ОЗУ подходил для вашего устройства. Если помните, для обычных ПК, как правило, вам подойдёт планка DIMM-оперативки, которая имеет стандартный размер. А вот компактные SO-DIMM и тем более серверные планки лучше избегать — стандартному ПК они всё равно не подойдут.

Что такое тайминги оперативной памяти?

Тайминг ОЗУ — это набор параметров, которые определяют, насколько быстро модуль оперативной памяти может получать доступ к данным и доставлять их. Тайминг оперативной памяти устанавливается производителем и определяется в спецификациях устройства. Они сказываются на эффективности оперативной памяти и могут повлиять на скорость работы системы. Более быстрые показатели способны привести к более быстрому доступу к информации и их передаче, но они также имеют увеличенную стоимость.

Важны ли тайминги оперативной памяти?

Тайминги ОЗУ важны, поскольку они могут повлиять на общую производительность персонального компьютера. Они имеют непосредственное отношение к задержке между моментом, когда делается запрос на доступ к данным из RAM чипов, и моментом, когда данные фактически доступны для использования.

Как узнать тайминги оперативной памяти?

Самый простой способ узнать тайминги — проверить спецификации. Эта информация доступна пользователю на упаковке продукта или на сайте производителя. Если же доступа к упаковке нет, используется уже собранный персональный компьютер или ноутбук, то очень часто можно найти характеристики скорости в системном БИОС или прошивке UEFI.

Проверка таймингов оперативной памяти

Если персональный компьютер собирался самостоятельно или была проведена замена планки оперативки, можно использовать сторонние программные утилиты, чтобы узнать тайминги памяти. C PU-Z — один из самых популярных вариантов, который может предоставить подробную информацию об аппаратном обеспечении устройства.

Расшифровка таймингов

Такие характеристики обычно представляются в виде ряда чисел, например «CL16-18-18-38» или «16-16-16-39». Эти цифры относятся к различным аспектам производительности оперативной памяти таким, как частота и тайминги оперативной памяти. Первое число, часто обозначаемое как «CL» или «CAS Latency», указывает на тактовые циклы, требующиеся RAM для ответа на запрос от ЦП.

Меньшее число CL указывает на более высокую производительность — например, модуль ОЗУ с CL 14 будет быстрее отвечать на запросы, чем модуль с CL 16. Остальные числа во временной последовательности относятся к другим аспектам производительности ОЗУ, например, ко времени для чтения или записи данных. Эти числа обычно менее важны, чем число CL, но они все же могут влиять на общую производительность.

Схема таймингов памяти

Часто такой показатель оперативной памяти представляются с помощью схемы, которая выглядит следующим образом — CL-tRCD-tRP-tRAS. Вот какое значение таймингов оперативной памяти в каждом из этих терминов:

  • CL. Задержка CAS.
  • tRCD. Задержка от RAS к CAS. Это относится к задержке между активацией строки в памяти и доступом к столбцу.
  • tRP. Время предварительной зарядки строки необходимое для деактивации строки после того, как данные были прочитаны или записаны в нее.
  • tRAS. Активен для времени предварительной зарядки. Это относится ко времени, которое требуется для деактивации строки и активации новой строки.

Все эти показатели имеют очень важное значение для полноценной работы устройства.

Штатные тайминги

Тайминги оперативной памяти могут сильно различаться в зависимости от конкретного модуля и производителя. Однако есть несколько «штатных» моментов, с которыми сталкивается большинство пользователей:

  • CL16. Это наиболее распространенное время для модулей оперативной памяти DDR4, и оно указывает на относительно высокую производительность. C L, или задержка CAS, является наиболее важным моментом, который следует учитывать при покупке ОЗУ. Он представляет собой количество тактов, которое требуется оперативной памяти для ответа на запрос от ЦП. Чем меньше число CL, тем быстрее будет работать оперативная память. Модуль ОЗУ CL16 обычно имеет время отклика 10 нс.
  • CL18. Модули оперативной памяти DDR4 с синхронизацией CL18 немного медленнее, чем модули CL16, но они также более доступны по цене. Обычно они имеют время отклика 11,25 нс.
  • CL14. Модули оперативной памяти DDR4 с синхронизацией CL14 считаются высококачественными и, как правило, более дорогими. Они обеспечивают высокую производительность со временем отклика 8,75 нс.

Средние тайминги DDR4

DDR4, или Double Data Rate 4 — это память DDR четвертого поколения, которая предлагает более высокую пропускную способность и скорость, чем ее предшественница DDR3. D DR4 предназначена для работы с современными процессорами и материнскими платами, обеспечивая более высокую производительность и эффективность компьютеров и других электронных устройств.

Модули памяти DDR4 имеют разные характеристики, влияющие на их производительность, и выбор правильных таймингов может значительно повлиять на скорость и стабильность вашей системы. Следует разобрать средние тайминги DDR4 и как выбрать правильные тайминги для конкретной системы.

Память DDR4 работает с базовой тактовой частотой 2133 МГц и может повышаться до 4800 МГц, обеспечивая более высокую пропускную способность, чем память DDR3. Память DDR4 поставляется в различных конфигурациях таких, как одноранговая, двухранговая, четырехранговая и восьмиранговая, каждая из которых имеет свои преимущества и недостатки.

Память DDR4 также имеет различные тайминги, такие как задержка CAS (CL), tRCD (задержка RAS-CAS), tRP (время предварительной зарядки строки), tRAS (задержка между активным и предварительным зарядом) и tRC (время цикла строки). Эти тайминги определяют, сколько времени требуется контроллеру памяти для доступа к конкретной ячейке памяти и завершения операции чтения или записи.

Средние тайминги DDR4 — это среднее значение 4 основных таймингов:

  • задержка CAS (CL);
  • tRCD;
  • tRP;
  • tRAS.

Средние тайминги выражаются 4 числами, например 16-18-18-36, которые представляют четыре тайминга по порядку.

Задержка CAS (CL)

Время, необходимое контроллеру памяти для доступа к ячейке памяти после получения команды. C L является наиболее важным параметром времени для производительности памяти DDR4, а более низкие значения CL указывают на более быстрое время доступа. Типичные значения CL для памяти DDR4 находятся в диапазоне от 14 до 19, где 14 — самый быстрый, а 19 — самый медленный.

tRCD (задержка RAS to CAS)

Время, необходимое контроллеру памяти для доступа к ячейке памяти после активации строки памяти. t RCD — второй по важности показатель времени для производительности памяти DDR4, а более низкие значения tRCD указывают на более быстрое время доступа. Типичные значения tRCD для памяти DDR4 находятся в диапазоне от 14 до 19, где 14 — самый быстрый, а 19 — самый медленный.

tRP (время предварительной зарядки строки)

Время, необходимое контроллеру памяти для предварительной зарядки строки памяти перед доступом к другой строке. Наименее важный показатель для производительности памяти DDR4, и более высокие значения tRP не влияют на производительность так сильно, как более высокие значения CL или tRCD. Типичные значения tRP для памяти DDR4 находятся в диапазоне от 14 до 19, где 14 — самый быстрый, а 19 — самый медленный.

tRAS (задержка от активации до предварительной зарядки)

Время, необходимое контроллеру памяти для активации строки памяти и последующей ее предварительной зарядки. t RAS также является важным параметром времени для производительности памяти DDR4, а более низкие значения tRAS указывают на более быстрое время доступа. Типичные значения tRAS для памяти DDR4 находятся в диапазоне от 30 до 42, где 30 — самый быстрый, а 42 — самый медленный.

Чем выше рабочая частота ОЗУ, тем выше время CL. Также отметим, что в таких случаях производительность поднимается за счёт увеличенной частоты при более менее приемлемых таймингах. Для наглядности стоит посмотреть на сравнительную таблицу самых популярных вариантов.

Подбор таймингов памяти DDR4

При выборе DDR4 необходимо учитывать несколько факторов, таких как характеристики процессора и материнской платы, предполагаемое использование системы и бюджет. Вот несколько рекомендаций, которые помогут выбрать правильные DDR4:

  • Проверьте характеристики процессора и материнской платы. Характеристики процессора и материнской платы играют решающую роль в определении максимальной поддерживаемой скорости DDR4. Перед покупкой DDR4 проверьте характеристики процессора и материнской платы, чтобы убедиться, что память совместима.
  • Учитывайте сценарий использования системы. Предполагаемое использование системы также может влиять на выбор DDR4. Например, если вы собираете игровой ПК, более быстрая синхронизация может обеспечить лучшую производительность в ресурсоемких играх. С другой стороны, если вы создаете рабочую станцию для таких задач, как редактирование видео или 3D-моделирование, больший объем памяти может оказаться более важным, чем более быстрое время.
  • Бюджет. Память DDR4 с более быстрыми характеристиками может быть дороже, чем с более медленными показателями. Подумайте о своем бюджете и выберите подходящие варианты DDR4.
  • Оптимизация вручную. Некоторые материнские платы позволяют вручную настраивать DDR4 для повышения производительности. Всегда проверяйте руководство к материнской плате и следуйте рекомендациям производителя при настройке.

При выборе DDR4 учитывайте характеристики процессора и материнской платы, предполагаемое использование системы и бюджет. Кроме того, нормальная латентность памяти DDR4 позволяет вручную настраивать timing, но это требует технических знаний и может привести к аннулированию гарантии. Выберите DDR4, которая обеспечит наилучший баланс производительности, совместимости и доступности для вашей системы.

Средние тайминги DDR3

Временные значения DDR3 зависят от конкретного модуля и частоты, на которую он рассчитан. Вот типичные характеристики для DDR3 на разных частотах:

Это наиболее распространенные значения таймингов, но разные производители могут предлагать несколько разные значения таймингов в зависимости от конкретного модуля. Кроме того, некоторые модули могут поддерживать XMP (Extreme Memory Profile), который может обеспечить еще более точные значения времени для повышения производительности, но требует ручной настройки в BIOS.

Задержка памяти DDR3

Задержка DDR3 относится к времени, которое требуется для доступа и извлечения данных. Задержка DDR3 может варьироваться в зависимости от нескольких факторов, включая скорость, тайминги, установленные в BIOS системы, а также конкретный ЦП и материнскую плату, используемые в системе.

Как правило, DDR3 имеет задержку CAS (строб доступа к столбцу) 9, 10, 11 или 12 тактов. Общая задержка рассчитывается путем добавления задержки CAS к дополнительной задержке, вносимой другими синхронизациями, такими как RAS (строб доступа к строке) и tRCD (задержка от RAS к CAS).

Общая задержка DDR3 может варьироваться от 9 нс для DDR3-1600 с малой задержкой до 15 нс и более для DDR3-1066 с большей задержкой. Однако важно отметить, что хотя меньшая задержка может привести к более быстрому доступу к данным, более высокая частота и большая емкость также могут улучшить общую производительность системы.

Какие тайминги лучше для DDR3

Для большинства пользователей DDR3 с таймингами 9-9-9-24 или 8-8-8-24 на частоте 1600 МГц является хорошим балансом между производительностью и стоимостью. Эти тайминги для DDR3 относятся к задержкам CAS, tRCD, tRP и tRAS соответственно.

Однако если вы создаете высокопроизводительную систему для игр или других ресурсоемких приложений, вам может потребоваться более быстрая DDR3 с более низкими таймингами, например, 7-7-7-20 или 6-6-6-18 при частоте 1866 МГц или более. Эти более быстрые комплекты, как правило, будут дороже, но они могут обеспечить заметный прирост производительности в определенных сценариях.

Латентность памяти DDR3

Задержка DDR3 относится ко временной задержке между запросом данных из модуля и доставкой этих данных в ЦП. Измеряется в наносекундах (ns) или тактовых циклах (CL). D DR3 имеет несколько временных параметров, влияющих на ее задержку, включая задержку CAS (CL), tRCD, tRP и tRAS.

Более низкие значения DDR3 приводят к более высокой производительности и меньшей задержке. Однако реальный выигрыш в производительности зависит от конкретной конфигурации системы и рабочей нагрузки. При выборе DDR3 для системы важно учитывать характеристики ЦП, материнской платы и разные тайминги оперативной памяти DDR3, чтобы обеспечить совместимость и оптимальную производительность.

Можно ли ставить оперативную память с разными таймингами?

В компьютерную систему можно установить RAM с разными таймингами. Однако когда устанавливается ОЗУ с разными таймингами, система будет использовать тайминги самого медленного установленного модуля ОЗУ. Это означает, что если у вас есть модуль RAM с таймингом 16-18-18-36 и другой модуль с таймингом 14-16-16-32, система будет работать с обоими модулями RAM на 16-18-18-36.

Должны ли совпадать тайминги оперативной памяти

Рекомендуется использовать модули RAM с одинаковыми таймингами, чтобы обеспечить наилучшую производительность и стабильность системы. Если вам нужно обновить систему и если у оперативной памяти разные тайминги — это не должно вызывать серьезных проблем. Чтобы добиться наилучших показателей, стоит со временем заменить модули на те, что будут иметь одинаковые тайминги.

Какие тайминги лучше для оперативной памяти?

Наилучшие тайминги для RAM зависят от нескольких факторов, включая конкретный тип и скорость используемого ОЗУ, а также требования к производительности компьютерной системы. Более низкие тайминги ОЗУ лучше влияют на производительность, потому что они позволяют памяти быстрее получать доступ к данным и передавать их. Однако это также означает, что модули RAM должны иметь возможность надежно работать на более высоких скоростях, чего может быть сложнее достичь с более производительной RAM.

Высокие тайминги оперативной памяти

Обычно относятся к более медленным таймингам, которые могут ограничивать производительность вашей ОЗУ. Это означает, что RAM потребуется больше времени для доступа и передачи данных, что может привести к снижению общей результативности системы.

Некоторые возможные причины использования более высоких таймингов ОЗУ могут включать:

  • Стабильность. В некоторых случаях увеличение таймингов вашей RAM может сделать ее более стабильной, особенно если вы разгоняете свою плату или другие системные компоненты.
  • Совместимость. Некоторые старые или более дешевые системы могут не поддерживать высокую производительность с низкими таймингами, поэтому увеличение таймингов может помочь обеспечить совместимость с вашим оборудованием.
  • Стоимость. Модули ОЗУ с меньшим значением времени могут быть дороже, чем модули с более высоким значением времени, поэтому выбор более высоких значений времени может быть более выгодным для некоторых пользователей.

Однако важно иметь в виду, что использование высоких таймингов ОЗУ почти всегда приводит к более низкой производительности, чем использование более низких таймингов, поэтому вам следует тщательно взвесить преимущества и недостатки использования более высоких таймингов для вашего конкретного случая использования.

Александр

Здравствуйте, меня зовут Александр, уже более 10 лет я занимаюсь ремонтом компьютером, этот сайт я создал чтобы делиться полезной и практической информацией с вами! Буду благодарен, если вы опишите свой опыт или мнение в комментарии, надеюсь, что данная информация принесёт только пользу

Оцените автора
WindowsComp.ru
Добавить комментарий