Появление этой статьи на Deep-Review было лишь вопросом времени. Многие читатели задавали одни и те же вопросы, суть которых сводилась к следующему: что реально отражает эта цифра (12, 10, 7 или 5 нм) в технических характеристиках смартфонов, где в процессоре те самые 5 нанометров? Что вообще такое техпроцесс и какой процессор лучше выбрать?
Сразу предупреждаю, что статья рассчитана на самый широкий круг читателей, то есть, при желании все сказанное смогут понять даже дети.
Но прежде, чем говорить о нанометрах и техпроцессе, нужно разобраться с транзистором. Без понимания этого устройства весь наш дальнейший разговор будет лишен смысла.
- Что такое транзистор в процессоре смартфона? Как он работает и зачем вообще нужен?
- Что такое техпроцесс или где же спрятаны эти «7 нанометров»?
- В чем различия и чего ждать в будущем
- Что такое техпроцесс и немного истории
- Будет ли уменьшаться техпроцесс в будущем
- Этапы технологического процесса при производстве микросхем
- Техпроцессы 1990-х годов
- Техпроцессы менее 200 нм
- 45 нм / 40 нм
- Техпроцессы с 2010-х годов по настоящее время
- 6 нм / 5 нм
- 1,4 нм / 1 нм
Что такое транзистор в процессоре смартфона? Как он работает и зачем вообще нужен?
Транзистор — это основа любого процессора, памяти и других микросхем. Он представляет собой крошечное устройство, способное работать в двух режимах: усиления или переключения электрического сигнала. Нас интересует именно режим переключателя.
Основа любой вычислительной техники — это единички и нолики. Просмотр видео на смартфоне, прослушивание музыки, дополненная реальность и нейронные сети — все это работает на «единичках и ноликах»:
Именно для получения единиц и нулей мы используем транзисторы. Когда из этого миниатюрного устройства выходит ток, мы говорим, что это единица, когда нет никакого электрического сигнала — получаем ноль.
Соответственно, один транзистор — это совершенно бесполезная ерунда, которая не сможет сделать ничего. Даже, чтобы посчитать 2+2 нам нужны десятки транзисторов.
Итак, для создания транзистора мы берем немножко песка (условно какую-то часть одной песчинки) и делаем из него микроскопическую основу:
Это будет наша кремниевая подложка (кремний получают именно из песка). Теперь нужно на эту основу нанести две области. Я думал, стоит ли погружаться в физику этого процесса и объяснять, как эти области делаются и что там происходит на уровне электронов, но решил не перегружать статью излишней информацией. Поэтому будем немножко абстрагироваться.
Итак, делаем две области: в одну ток подаем (вход в транзистор), а из другой — считываем (выход):
Мы сделали эти области внутри кремниевой подложки таким образом, чтобы ток не смог пройти от входа к выходу. Он будет останавливаться самим кремнием (показан зеленым цветом). Чтобы ток смог пройти от входа к выходу по поверхности кремниевой подложки, нужно сверху разместить проводящий материал (скажем, металл) и хорошенько его изолировать:
А теперь самое важное! Когда мы подадим напряжение на этот изолированный кусочек металла, размещенный над кремниевой подложкой, он создаст вокруг себя электрическое поле. Изоляция никак не будет влиять на действие этого электрического поля. И здесь происходит вся «магия»: слой кремния под действием этого электрического поля начинает проводить ток от входа к выходу! То есть, когда мы подаем напряжение, ток может легко протекать между двумя областями:
Вот и все! Осталось дело за малым — подключить «провода» (электроды) ко входу, выходу и кусочку изолированного металла, с помощью которого мы и будем включать/выключать транзистор. Назовем их так:
Для закрепления материала немножко поиграемся с этим транзистором.
Итак, транзистор находится под напряжением, то есть, электричество подается на исток. Но на затворе тока нет, так как на наш транзистор не «пришла единица». Соответственно затвор «закрыл» транзистор и ток по нему пройти дальше не сможет, так что и на выходе из транзистора мы получаем ноль:
Теперь ситуация изменилась и на затворе транзистора появилось напряжение, которое создало электрическое поле, позволившее току пройти через транзистор от истока к стоку. Как результат — транзистор выдал единицу (есть электрический сигнал):
Вот так все просто! То есть, основное напряжение поступает на вход ко всем транзисторам, но будет ли каждый конкретный транзистор пропускать этот ток дальше — зависит от незначительного напряжения на затворе. Это напряжение может появляться, например, когда другой транзистор, подключенный к этому, отправил электрический импульс («единичку»).
Этого знания более, чем достаточно для того, чтобы ответить на все остальные вопросы, касательно нанометров и логики работы процессора.
О том, какие физические процессы стоят за таким нехитрым переключателем, то есть, что именно заставляет электроны проходить по кремнию, когда над ним появляется электрическое поле, я рассказывать не буду. Возможно, о легировании кремния фосфором и бором, p-n переходах и электрических полях мы поговорим как-нибудь в другой раз. А сейчас перейдем к основному вопросу.
Что такое техпроцесс или где же спрятаны эти «7 нанометров»?
Предположим, у нас есть современный смартфон, процессор которого выполнен по 7-нм техпроцессу. Что внутри такого процессора имеет размер 7 нанометров? Предлагаю вам выбрать правильный вариант ответа:
Какой бы вариант вы ни выбрали, ваш ответ — неверный, так как ничего из перечисленного не имеет такого размера. Если бы этот же вопрос я задал лет 20 назад, правильным ответом была бы длина затвора (или длина канала, по которому протекает ток от стока к истоку):
Стоп! Длина канала, ширина, площадь — да какая разница, что в чем измеряется!? Зачем вообще придумали эти названия техпроцессов, для чего они нужны простым людям? Что вообще должен показывать техпроцесс обычному покупателю? Зачем ему знать ту же длину затвора транзистора?
Давным давно один человек по имени Гордон Мур (основатель корпорации Intel) задумался о том, как быстро развиваются технологии. Под словом «развитие» он подразумевал рост количества транзисторов, помещающихся на одной и той же площади. Дело в том, что этот показатель напрямую влияет на скорость вычислений. Процессор, вмещающий всего 1 млн транзисторов будет работать гораздо медленней, чем тот, внутри которого находятся 10 млн транзисторов.
Более того, уменьшая размер транзистора, автоматически снижается его энергопотребление (ток, проходящий через транзистор пропорционален отношению его ширины к длине). Также уменьшается размер затвора и его емкость, позволяя ему переключаться еще быстрее. В общем, одни плюсы!
Так вот, этот человек наблюдал за историей развития вычислительной техники и заметил, что количество транзисторов на кристалле удваивается примерно каждые 2 года. Соответственно, размеры транзисторов уменьшаются на корень из двух раз.
Другими словами, нужно умножать каждую сторону квадратного транзистора на 0.7, чтобы его площадь уменьшилась вдвое:
Повторюсь, до определенного момента эта цифра означала длину канала (или длину затвора), так как эти элементы уменьшались пропорционально размеру транзистора.
Но затем удалось сокращать длину затвора быстрее, чем другие части транзистора. С тех пор связывать размер затвора с техпроцессом стало не совсем корректно, так как это уже не отражало реального увеличения плотности размещения транзисторов на кристалле.
Например, в 250-нм техпроцессе длина затвора составляла 190 нанометров, но транзисторы не были упакованы настолько плотно по сравнению с предыдущим техпроцессом, чтобы называть его 190-нанометровым (по размеру затвора). Это не отражало бы реальную плотность.
Затем длина канала и вовсе перестала уменьшаться каждые два года, так как появилась новая проблема. При дальнейшем уменьшении длины канала, электроны могли обходить узкий затвор, так как блокирующий эффект был недостаточно сильным. Более того, такие утечки возникали постоянно, вызывая повышенное энергопотребление и нагрев транзистора (и, как следствие, всего процессора).
В общем, техпроцесс отвязали от длины затвора и взяли просто группу из нескольких транзисторов (так называемую ячейку) и площадь этой ячейки использовали для названия техпроцесса.
К примеру, в 100-нм техпроцессе ячейка из 6 транзисторов занимала, скажем, 100 000 нанометров (это условная цифра из головы). Компания упорно работала над уменьшением размеров транзисторов или увеличением плотности их размещения и через пару лет добилась того, что в новом процессоре эта же ячейка занимает уже 50 000 нм.
Не важно, уменьшился ли размер транзисторов или просто удалось упаковать их более плотно (за счет сокращения слоя металла и других ухищрений), можно смело говорить, что количество транзисторов на кристалле выросло в два раза. А значит мы умножаем предыдущий техпроцесс (100 нм) на 0.7 и получаем новенький процессор, выполненный по 70-нм техпроцессу.
Однако, когда мы дошли до 22-нанометрового техпроцесса, уменьшать длину затвора уже было нереально, так как электроны проходили бы сквозь этот затвор и транзисторы постоянно бы пропускали ток.
Решение оказалось простым и гениальным — нужно взять канал, по которому проходит ток и поднять его вверх, над кремниевой основной, чтобы он полностью проходил через затвор:
Теперь всё пространство, по которому идет ток, управляется затвором, так как полностью им окружено. А раньше, как мы видим, этот затвор находился сверху над каналом и создавал сравнительно слабый блокирующий эффект.
С новой технологией, получившей название FinFET, можно было продолжать уменьшать длину затвора и размещать еще больше транзисторов, так как они стали более узкими (сравните на картинке ширину канала). Но говорить о размерах транзистора стало вообще бессмысленно. Не совсем понятно даже, как эти размеры теперь высчитывать, когда транзистор из плоского превратился в трехмерный.
Таким образом, техпроцесс полностью «оторвался» от каких-либо реальных величин и просто условно обозначает увеличение плотности транзисторов относительно предыдущего техпроцесса.
К примеру, длина канала в 14-нм процессоре от Intel составляет 24 нанометра, а у Samsung — 30 нанометров. Отличаются и другие метрики этих процессоров, сделанных, казалось бы, по одинаковому техпроцессу. Более того, длина затвора — не самая миниатюрная часть транзистора. В том же 14-нм процессоре ширина канала вообще состоит из нескольких атомов и составляет 8 нанометров! То есть, техпроцесс — это даже не описание самой маленькой части транзистора.
Другими словами, нанометровый техпроцесс не описывает размеры транзисторов. Сегодня это условная цифра, означающая плотность размещения транзисторов или увеличение количества транзисторов относительно предыдущего техпроцесса (что напрямую влияет на быстродействие процессора).
В любом случае, важно запомнить простое правило и пользоваться им при анализе характеристик смартфона:
Разница техпроцесса в 0.7 раз означает двукратное увеличение количества транзисторов
Для примера можем посмотреть на последние чипы от Apple. В 10-нм процессоре Apple A11 Bionic содержится 4.3 млрд транзисторов, а в 7-нм Apple A13 Bionic — 8.5 млрд транзисторов. То есть, видим, что техпроцесс отличается в 0.7 раз, а количество транзисторов — в 2 раза. Соответственно, 7-нм процессор гораздо производительней 10-нанометрового.
Продолжая аналогию, в 5-нм процессоре должно вмещаться в 2 раза больше транзисторов, чем в 7-нанометровом! Если вас не очень удивляет этот факт, обязательно почитайте на досуге мою заметку об экспоненциальном развитии технологий.
Итак, когда вы будете смотреть на два смартфона с 14-нм и 10-нм процессорами, то знайте что в последнем гораздо больше транзисторов, соответственно, его вычислительная мощность заметно выше. Так и следует пользоваться «техпроцессом» при выборе смартфона.
А если вам интересно, как эти бездушные транзисторы умеют «думать», делать сложные вычисления, показывать фильмы или проигрывать музыку, тогда ответы на эти вопросы читайте в нашем новом материале!
Алексей, глав. редактор Deep-Review
В чем различия и чего ждать в будущем
Сейчас много говорят о техпроцессе. Даже простые покупатели, приобретая телефон, компьютер или видеокарту интересуются этим параметром и выбирают технику с его наименьшим значением. В новой статье от «ЗУМ-СМД» узнаем, почему техпроцесс постоянно уменьшается и какие преимущества от этого можно получить.
Что такое техпроцесс и немного истории
Ключевыми элементами интегральной схемы являются детали с одним, двумя и более p-n-переходами — диоды и транзисторы. Созданный на кристалле полупроводниковый элемент принято считать транзистором. Для построения каскада или логического элемента их требуются десятки, а для создания регистров может понадобиться несколько сотен полупроводниковых ячеек. Для того чтобы реализовать даже самый простой контроллер или процессор необходимо большое число каскадов и узлов, каждый из которых состоит из транзисторов.
Первый микропроцессор от Intel, выпущенный в 1971 году, содержал 2250 транзисторов. Но уже через 7 лет, в 1978 году компания презентует изделие, содержащее 29 000 полупроводниковых элементов. Передовой процессор того времени выполнял очень мало функций.
К концу 2000-го года Intel создала процессор для компьютера Pentium 4, который состоял уже из 42 миллионов транзисторов. Но это все еще одноядерный процессор, разрядностью 32 бит. Современные процессоры для компьютеров, ноутбуков, планшетов и смартфонов давно уже работают на 64-битных шинах и имеют десятки ядер.
Например, сегодня в телефонном чипе Apple A14 Bionic содержится уже 11,8 миллиардов полупроводниковых элементов, а в AMD Epyc Rome — 39,54 миллиардов. Площадь кристалла последнего из упомянутых процессоров составляет 717 мм². Напомним, что первый процессор Intel имел ее в размере 12 мм².
Получается, что площадь кристалла выросла примерно в 60 раз, а количество транзисторов — в 17,57 миллионов. Как они вместились? Естественно, для увеличения плотности элементов приходится уменьшать их габариты. Это и есть техпроцес. Он выражает условный размер в нанометрах, который приходится на 1 условный транзистор из всех, которые есть в кристалле чипа.
Некоторые полупроводниковые элементы могут быть габаритнее, имея большую мощность или большее количество p-n-переходов, другие наоборот — меньше. Но если производителям чипов удается упаковать большее число транзисторов в меньшие габариты кристалла, значит используется техпроцесс меньшего размера.
Будет ли уменьшаться техпроцесс в будущем
В настоящее время тайваньская компания TSMC выпускает чипы с техпроцессом 6 и 5 нм, которые используются в смартфонах. Продолжают пользоваться спросом процессоры 45 — 40 нм, а также 32 — 28 нм, анонсированные в производство в 2006 — 2010 годах. Наиболее востребованными сейчас считаются процессоры с техпроцессами:
Техпроцесс не стоит на месте. Выпущены образцы чипов с техпроцессом 3, 2 и даже 1,4 нм. Дальнейшее уменьшение упирается в дополнительные затраты и сложности, которые делают производство нерентабельным, а чипы недолговечными.
Технологический процесс полупроводникового производства — технологический процесс по изготовлению полупроводниковых (п/п) изделий и материалов; часть производственного процесса по изготовлению п/п изделий (транзисторов, диодов и т. п.); состоит из: последовательности технологических (обработка, сборка) и контрольных операций.
Фото микропроцессора Apple/, предназначенного для первого Apple Macintosh.
При производстве п/п изделий применяется фотолитография и литографическое оборудование. Разрешающая способность (в мкм и нм) этого оборудования (т. н. проектные нормы) и определяет название применяемого конкретного технологического процесса.
Совершенствование технологии и пропорциональное уменьшение размеров п/п структур способствуют улучшению характеристик (размеры, энергопотребление, рабочие частоты, стоимость) полупроводниковых приборов (микросхем, процессоров, микроконтроллеров и т. д.). Особую значимость это имеет для процессорных ядер, в аспектах потребления электроэнергии и повышения производительности, поэтому ниже указаны процессоры (ядра) массового производства на данном техпроцессе.
Этапы технологического процесса при производстве микросхем
Пластина монокристаллического кремния с готовыми микросхемами
Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.
Для выполнения требований электронной производственной гигиены строят особо чистые помещения («чистые комнаты»), в которых люди могут находиться только в специальной одежде
Технологии производства полупроводниковой продукции с субмикронными размерами элементов основаны на чрезвычайно широком круге сложных физико-химических процессов: получение тонких плёнок термическим и ионно-плазменным распылением в вакууме, механическая обработка пластин производится по 14-му классу чистоты с отклонением от плоскостности не более 1 мкм, широко применяется ультразвук и лазерное излучение, используются отжиг в кислороде и водороде, рабочие температуры при плавлении металлов достигают более 1500 °C, при этом диффузионные печи поддерживают температуру с точностью 0,5 °C, широко применяются опасные химические элементы и соединения (например, белый фосфор).
Техпроцессы 1990-х годов
350 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1995—1997 годах ведущими компаниями — производителями микросхем, такими как Intel, IBM, и TSMC. Соответствует линейному разрешению литографического оборудования, примерно равному 0,35 мкм.
250 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1998 году ведущими компаниями — производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,25 мкм.
180 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1999 году ведущими компаниями — производителями микросхем. Соответствует удвоению плотности размещения по отношению к предыдущему техпроцессу 0,25 мкм. Также впервые используются внутренние соединения на основе медных соединений (Copper-based chips) с меньшим сопротивлением, чем у ранее применявшегося алюминия.
Техпроцессы менее 200 нм
Технологический процесс с проектной нормой 90 нм часто используется с технологиями напряженного кремния, а также c новыми диэлектрическими материалами с низкой диэлектрической проницаемостью (en:Low-k dielectric).
45 нм / 40 нм
22 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009—2012 годам ведущими производителями микросхем. Соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 32 нм.
Техпроцессы с 2010-х годов по настоящее время
Основная статья: 7 nm
- Snapdragon 855
- Snapdragon 865
- Exynos 990
- HiSilicon Kirin 980
6 нм / 5 нм
Основная статья: 5 nm
Первым массовым продуктом, произведённым по 5-нм техпроцессу, стал Apple A14, представленный в сентябре 2020 года. В ноябре 2020 года был представлен процессор Apple M1, предназначенный для компьютеров линейки Macintosh.
В сентябре 2022 года был представлен мобильный процессор Apple A16, выпущенный по 4 нанометрам.
1,4 нм / 1 нм
Intel в конце 2022 года заявила что после 3-нм и 1,4-нм техпроцессов будет разрабатывать 1 нм. Атом кремния имеет диаметр 0,24 нанометра, таким образом 1 нанометр соответствует 4 атомам кремния в поперечнике. Однако названия последних поколений техпроцессов являются маркетинговыми и не отражают геометрических размеров транзисторов (хотя и иллюстрируют прогресс увеличения плотности транзисторов в чипе).